Hypoxia-Mediated Mechanism of MUC5AC Production in Human Nasal Epithelia and Its Implication in Rhinosinusitis
نویسندگان
چکیده
BACKGROUND Excessive mucus production is typical in various upper airway diseases. In sinusitis, the expression of MUC5AC, a major respiratory mucin gene, increases. However, the mechanisms leading to mucus hypersecretion in sinusitis have not been characterized. Hypoxia due to occlusion of the sinus ostium is one of the major pathologic mechanisms of sinusitis, but there have been no reports regarding the mechanism of hypoxia-induced mucus hypersecretion. METHODS AND FINDINGS This study aims to identify whether hypoxia may induce mucus hypersecretion and elucidate its mechanism. Normal human nasal epithelial (NHNE) cells and human lung mucoepidermoid carcinoma cell line (NCI-H292) were used. Sinus mucosa from patients was also tested. Anoxic condition was in an anaerobic chamber with a 95% N2/5% CO2 atmosphere. The regulatory mechanism of MUC5AC by anoxia was investigated using RT-PCR, real-time PCR, western blot, ChIP, electrophoretic mobility shift, and luciferase assay. We show that levels of MUC5AC mRNA and the corresponding secreted protein increase in anoxic cultured NHNE cells. The major transcription factor for hypoxia-related signaling, HIF-1α, is induced during hypoxia, and transfection of a mammalian expression vector encoding HIF-1α results in increased MUC5AC mRNA levels under normoxic conditions. Moreover, hypoxia-induced expression of MUC5AC mRNA is down-regulated by transfected HIF-1α siRNA. We found increased MUC5AC promoter activity under anoxic conditions, as indicated by a luciferase reporter assay, and mutation of the putative hypoxia-response element in MUC5AC promoter attenuated this activity. Binding of over-expressed HIF-1α to the hypoxia-response element in the MUC5AC promoter was confirmed. In human sinusitis mucosa, which is supposed to be hypoxic, expression of MUC5AC and HIF-1α is higher than in control mucosa. CONCLUSION The results indicate that anoxia up-regulates MUC5AC by the HIF-1α signaling pathway in human nasal epithelia and suggest that hypoxia might be a pathogenic mechanism of mucus hypersecretion in sinusitis.
منابع مشابه
Reconstituted Human Upper Airway Epithelium as 3-D In Vitro Model for Nasal Polyposis
BACKGROUND Primary human airway epithelial cells cultured in an air-liquid interface (ALI) develop a well-differentiated epithelium. However, neither characterization of mucociliar differentiation overtime nor the inflammatory function of reconstituted nasal polyp (NP) epithelia have been described. OBJECTIVES 1st) To develop and characterize the mucociliar differentiation overtime of human e...
متن کاملTMEM16A-Mediated Mucin Secretion in IL-13-Induced Nasal Epithelial Cells From Chronic Rhinosinusitis Patients
PURPOSE Chronic rhinosinusitis with nasal polyps (CRSwNP), a mainly Th2 cytokine-mediated disease, often involves mucus secretion. Recent evidence suggests that transmembrane protein 16A (TMEM16A), a calcium-activated Cl- channel (CaCC), can regulate mucus secretion from airway epithelium by transepithelial electrolyte transport and hydration. However, the role of TMEM16A in mucin production/se...
متن کاملIncreased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC.
OBJECTIVES/HYPOTHESIS Mucus hypersecretion is a hallmarks of chronic rhinosinusitis. The expression of MUC5AC, a major respiratory mucin gene, is increased in chronic rhinosinusitis. The mechanisms inducing mucus hypersecretion have not been fully evaluated in chronic rhinosinusitis. Human Ca2+ -activated Cl- channel 1 (hCLCA1) is implicated in the regulation of mucus production, airway fluid, ...
متن کاملExpression and Regulation of Transcription Factor FoxA2 in Chronic Rhinosinusitis With and Without Nasal Polyps
PURPOSE Chronic rhinosinusitis (CRS) is characterized by the excessive production of mucus. However, the molecular mechanism underlying mucin overproduction in CRS with or without nasal polyps (CRSwNP and CRSsNP, respectively) is poorly understood. This study was conducted to assess the importance of the transcription factor FoxA2 in mucin production and to investigate the targeting of FoxA2 as...
متن کاملEnhanced expression of SAM-pointed domain-containing Ets-like factor in chronic rhinosinusitis with nasal polyps.
OBJECTIVE/HYPOTHESIS Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by significant goblet hyperplasia and mucus hypersecretion. However, the molecular mechanism underlying mucin overexpression in CRSwNP has not been well characterized. This study sought to assess the expression of SAM-pointed domain-containing Ets-like factor (SPDEF) and its regulation of mucin production in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014